First Milestone Documentation

Thursday, March 7th 2007

EE Senior Design

Prof. Schafer

Team Calvin:

Matthew Buckle

Mario Chiu

Jeffrey Spieldenner

Clement Suhendra
Hovercraft Control Scheme and Hardware Modifications

The majority of my work this semester has been involved in attaining the necessary parts to construct more hovercrafts, providing maintenance on our previous two hovercrafts, and developing new ideas from both the hardware and the software aspects of this project to provide for more stable behavior from the hovercrafts.

The beginning of the semester was spent cutting out the necessary pieces to construct the next two hovercrafts, putting together a new skirt using a garbage bag, and testing two new motors that we received. After performing various voltage and current tests, I determined that it would benefit our group to keep using the old motors that we had been using the previous semester.

I met with Professor Bauer on two occasions in Stepan Center to determine what steps needed to be taken to improve the hovercrafts’ functionality. After the first set of tests, the hovercraft would perform admirably for the first half minute, but then would become unstable as time wore on. Three ideas were brought up to fix this problem: repair the skirt, attach a diode across the terminals of the thrust motors so that the motors would stop quickly when switched off, and have the lift motor turn off every couple of seconds to prevent the inertia and momentum of the hovercraft from causing it to become unstable.

In order to achieve this third goal, I added a second control circuit (the first one is being used to switch the thrust fans on and off) which would control the thrust fan via the telos mote. Working with Yupeng, a graduate student working with Professor Bauer on this same project, we modified the code and installed the new circuitry onto the hovercraft. During the second demo in Stepan Center, we tested our new control algorithm as well as the waypoint navigation code.

Although there were noticeable improvements in the tracking ability of the hovercraft, the imbalance of the system prevented the hovercraft from performing as desired. These same issues prevented the hovercraft from succeeding in moving from waypoint to waypoint, even though the algorithm was proven to be functional by manually moving the hovercraft from beacon to beacon.

We came up with multiple ideas to fix the balancing issues of the hovercraft, including adding weights to the chassis until it reaches a state of equilibrium and having the hovercraft “work around” its balance problems by limiting the power of one of thrust fans through the use of diodes in series. These ideas will be tested on the hovercraft the Thursday after Spring Break.

Overall, I feel that significant progress has been made in the control algorithm and hardware of the hovercraft system. Once the balance issues are solved, I believe that the hovercraft will behave in the desired manner.

D200 H-Bridge Motor Driver

Testing Mode & Results

After spending some time to research the capability of the D200, I found that this board is very sensitive. Thus it is necessary to do a double check on our circuit before completing the circuit. My first testing is by using only a DC power supply in the Electronics lab. Also make sure that you turn the knob of the current as high as possible.

First Milestone Demonstration Setup

· µC is outputting two PWM signals, one with 20% duty cycle and the other with 40%

· Default value of IN1 and IN2 is L and H, to go forward

· IN1 and IN2 can be changed by inputting the values in the Hyperterminal

· To change the speed, I have to manually unplug the EN connection to either C1 or C2

First Milestone Demonstration Result

Speed of motor

This is controlled by the duty cycle of the PWM signal, coming into the EN line. The higher the percentage of the duty cycle, the higher the speed of the motor. I also observed that when the motor is driven in a low speed, a high pitch noise is produced.

Direction of motor

This is controlled by the signals coming into IN1 and IN2 lines, either ‘0’ or ‘1’. The motor can go forward, reverse, and stop.

Truth Table

	Enable
	IN1
	IN2
	Action

	H
	L
	L
	Fast Motor Stop

	H
	L
	H
	Forward

	H
	H
	L
	Reverse

	H
	H
	H
	Fast Motor Stop

	L
	x
	X
	Free Running Motor Stop

Overall, the demo is successful.

Lessons Learned

· Read the Data Sheet of the PIC18F4620

· Pin Assignments (C7 and E0 are used already, I tried to use it for the output of the directional signals; C2 is pin output for CCP1 and C1 for CCP2; the daughter card used pin C2)

· In the Register table (data sheet), if a register is not specified to be defined per bit, a decimal value is the default value that can be entered

· In writing in C, add ‘b’ in the end of a binary number and ‘0x’ in the front of a hex number

· Use the updated version of EESD file

· The periods of the two PWM produced are the same, because both of them are using one register, Timer 2, for the CCP/EECP mode

· Restart Hyperterminal window if any anomaly is observed (in the part where µC is waiting for our input from the hyperterminal for IN1 and IN2)

· Although in the data sheet of the D200, it is said that D200 only takes ‘1’ to be 5V. In reality, the ‘1’ signal sent by the µC works. The voltage level of the signal being sent is 3.3V.

· Fuse can’t be neglected, especially the 15A one, to protect the D200

Capabilities that we want for our final design using 2 – H-Bridges (without using D200):

· Speed control: being able to increase and decrease the speed by incrementing or decrementing the duty cycle of the PWM signal (in the code)

· Directional control: being able to go forward, reverse, and stop

Action Items

· Pin Assignments (do not want to interfere with SPI, the rest of the output pins needed that can be rerouted somewhere else)

· Better connections with the pins

· Allegro part capability (board design and testing will be done after Spring break)

· Integrating the code with the SPI, etc

· Hovercraft frame design (location of the µC and H-Bridges)

The next milestone for our own H-Bridge design is within 2 weeks after Spring break, which is March 31, 2007.
Schematics

D200 H-Bridge Motor Driver Testing Circuit Schematic (March 7, 2007)

[image: image1.jpg]72v
Baitery

Motor B+

§ Fuse
SOCSBY oo e
Motor &
B
Adapter]
PIC18F4620, D200 . o]
Sortoes iy,
o
GROUND Copacitor - 0.16F

Commented Code
MATLAB Code

%PWM Period Calculation for PIC18F4620
clc;
clear all;
%input frequency desired (for the d200 cas
disp 'PWM PERIOD CALCULATION: PR2 value';
pwmfreq = 1000; %1kHz
disp 'Desired PWM Frequency in Hz =',disp (pwmfreq);
pwmprd = pwmfreq^-1;
disp 'Desired PWM Period in seconds =',disp (pwmprd);
fosc = 10e6;
disp 'uC Oscillator Frequency (10 MHz crystal with 4 multiplier) ='
disp (fosc);
disp 'uC Oscillator Period (Tosc) in seconds =';
Tosc = fosc^-1;
disp (Tosc);
disp 'Timer2 Prescale Value (1, 4, or 16) =';
Tmr2prescl = 16;
disp (Tmr2prescl);
disp 'PR2 value =';
pr2 = (pwmprd/(4*Tosc*Tmr2prescl))-1;
pr2 = ceil(pr2);
disp (pr2)
disp 'Actual Frequency that will be produced in Hz';
mod_pwmprd = (pr2+1)*4*Tosc*Tmr2prescl;
mod_pwmfreq = mod_pwmprd^-1;
disp (mod_pwmfreq);
disp 'Rounded Frequency that will be produced in Hz';
disp (round(mod_pwmfreq));
disp '==============================='
disp '10-Bit CALCULATION (CCPRxL:CCPxCON<5:4>)';
disp 'Desired PWM Duty Cycle in seconds =';
pwmdtcyc = mod_pwmprd*0.6; %for 60% duty cycle
disp (pwmdtcyc);
disp 'Decimal form of (CCPRxL:CCPxCON<5:4>) ='
bit = pwmdtcyc/(Tosc*Tmr2prescl);
bit = floor(bit);
disp (bit);
binbit = dec2base(bit,2);
disp 'Binary form of (CCPRxL:CCPxCON<5:4>) ='
disp (binbit);
µController Code
#include <system.h>

#include "EESD.h"

#pragma DATA _CONFIG1H, _OSC_HS_1H //10 MHz

#pragma DATA _CONFIG2H, _WDT_OFF_2H

#pragma DATA _CONFIG4L, _LVP_OFF_4L

#pragma DATA _CONFIG3H, _MCLRE_ON_3H

#pragma CLOCK_FREQ 10000000

void main (void)

{

//*********************

//**start of pwm code**

//*********************

//1. setting the pwm period by writing to the PR2 register = 0x9C (hex)

pr2 = 156;

//2. setting the pwm duty cycle by writing to the CCPRxL register and CCPxCON<5:4> bits

//in this case CCPR1L & CCP1CON (with 40% duty cycle); PWM Duty Cycle = 4.0192e-4 s

ccpr1l = 125 >> 2;

//20% duty cycle

ccpr2l = 376 >> 2;

//60% duty cycle

//ccpr1l = 00011111b;

//for 20% duty cycle

//ccpr2l = 01011110b;

//for 60% duty cycle

//writing to CCP1CON

ccp1con.5 = 0;

ccp1con.4 = 1;

//5. configuring the CCPx module for PWM operation (for PWM mode: 11xx)

ccp1con.3 = 1;

ccp1con.2 = 1;

ccp1con.1 = 0;

ccp1con.0 = 0;

//writing to CCP2CON

ccp2con.5 = 0;

ccp2con.4 = 0;

//5. configuring the CCPx module for PWM operation (for PWM mode: 11xx -- CCP mode, not EECP)

ccp2con.3 = 1;

ccp2con.2 = 1;

ccp2con.1 = 0;

ccp2con.0 = 0;

//3. making the CCPx pin an output by clearing the appropriate tris bit

trisc.2 = 0;
//the output of CCP1 is c2, not c1

trisc.1 = 0;
//the output of CCP2 is c1

//4. setting the TMR2 prescale value, then enable Timer2 by writing to T2CON

//TMR2 = 16 (00 = 1; 01 = 4; 1x = 16)

t2con.1 = 1;

//prescale value

t2con.0 = 0;

//prescale value

t2con.2 = 1;

//turning on timer2

//*******************

//**end of pwm code**

//*******************

//*****************************

//**start of directional code**

//*****************************

serial_init();

//calling the routine to initialize the serial interface

LCD_init();

//calling the routine to initialize the LCD interface

//directional variables initialization

char temp1;

char temp2;

unsigned short in1;

unsigned short in2;

//code for inputing values to IN1 and IN2

trisc.0 = 0;
//the output for IN1

trisd.0 = 0;
//the output for IN2

//forward action

latc.0 = 0;

//initialization for IN1

latd.0 = 1;

//initialization for IN2

while (1) {

LCD_printf(" A ");

//for the sake of testing

putstring("\r \n IN1: ");

//print to Hyperterminal interface

LCD_printf(" B ");

//for the sake of testing

temp1 = getc();

//getting the character inputted from the hyperterminal

putstring("\r \n IN2: ");

//print to Hyperterminal interface

LCD_printf(" C ");

//for the sake of testing

temp2 = getc();

//getting the character inputted from the hyperterminal

in1 = temp1 - 0x30;

//convert temp1 from ASCII to decimal

LCD_printf(" D ");

//for the sake of testing

in2 = temp2 - 0x30;

//convert temp2 from ASCII to decimal

LCD_printf(" E ");

//for the sake of testing

latc.0 = in1;

//write in1 to c0

LCD_printf(" F ");

//for the sake of testing

latd.0 = in2;

//write in2 to d0

LCD_printf(" G ");

//for the sake of testing

}

//***************************

//**end of directional code**

//***************************

}

SPI and CC2420

SPI Initialization

The first step taken to get this subsystem to work was to configure the SPI interface as required for the communications with the Chipcon CC2420. We had to write and initialization routine based on the PIC18F4620 datasheet, the CC2420 datasheet and the schematic which showed the connections between both parts. The registers associated with the SPI interface can be seen below. The are configured as specified within the initialization function SPI_init().

[image: image2.emf]
· INTCON, PIR1, PIE1 and IPR1 are all interrupt-related registers and we decided that we would not be needing them at this stage.

· TRISA and TRISC are both I/O pin registers, of which we only use TRISC.

· TRISC bit 3 will be used as a serial clock output (SCK)

· TRISC bit 4 will be used as a serial data input (SDI)

· TRISC bit 5 will be used as a serial data output (SDO)

· SSPBUF is the buffer that sends and receives the data via the SPI interface

· SSPCON1 can be seen in the figure below.

· Bit 7 (WCOL) is set to no collision.

· Bit 6 (SSPOV) is set to no overflow

· Bit 5 (SSPEN) is set to enabled

· Bit 4 (CKP) is set to idle clock low level

· Bits 3:0 (SSPM) is set to clock = Fosc/64

· SSPSTAT is MSSP status register in SPI mode

· Bit 7 is set to input data sampled at end of data output time

· Bit 6 is set to transmit occurs on transition from active to Idle clock state
[image: image3.emf]
In addition, we also make use of I/O ports b, c and d in the following manner:

· TRISB

· Bit 0 is used as an input for FIFOP from the CC2420

· Bit 1 is used as an input for FIFO from the CC2420
· Bit 2 is used as an input for CCA from the CC2420
· TRISC

· Bit 2 is used as an input for SFD from the CC2420

· TRISD

· Bit 0 is used as an output Reset bit for the CC2420 (active low)

· Bit 1 is used as an output to control the Voltage Regulator in the CC2420

· Bit 2 is used as an output that controls the Chip Select on the CC2420

SPI and CC2420 functionality

In order to interface with the CC2420, data must be loaded to the SSPBUF register. As soon as 8 bits are loaded and shifted out, the mssp flag goes up to indicate this. The data that is now held in the SSPBUF are 8 bits that have been shifted in. In the case of the CC2420 this is either a status byte or byte sent from a register.

[image: image4.emf]

Diagram of SPI

This basic interface is used to communicate with the CC2420, and so far we have been able to create the following functionalities:

· Issue Command Strobes: they are used for basic commands, such as turning on the crystal oscillator. They return a single status byte.

· Read registers: RAM registers permit the configuration of many of the options available in the CC2420, and we are able to check all of these settings. They are usually 2 bytes long.

· Write to registers: we are able to change the configuration of the RAM registers and are able to do such things as selecting the transmission channel.

· Read RXFIFO: this particular register stores received data packets and can hold up to 128 bytes. We are able to retrieve the data packets from this register and to manipulate them.

· Obtain RSSI values: from the data packets obtained from the RXFIFO, we are able to read off the RSSI byte and translate it to decibels.

[image: image5.emf]
Typical CC2420 SPI operation

In the following weeks we will be working on the following capabilities:

· Sending data packets: we will be using the TXFIFO in order to broadcast data packets that include relevant information.

· Discriminating between packets: we also want to develop routines that are able to discriminate between relevant and non-relevant data packets, be it at the MAC or application layers.

Commented Code
cc2420lib.c

(SPI and CC2420 functions)

#include <system.h>

#include "cc2420.h"

char *str[30];

/**

 * This file contains the required routines
 *

 * required to communicate withthe CC2420
 *

 **/

volatile bit mssp@PIR1.3;
// SSPIF: MSSP Interrupt Flag --> trans/recp complete or waiting

void SPI_init(void)

{

trisd.0 = 0;
// RESET the chipcon

//latd.0 = 0;

//delay_ms(2000);

latd.0 = 1;

// INTCON: Interrupt Control Register

intcon.7 = 0;

// GIE: Global Interrupt Enable

intcon.6 = 0;

// PEIE: Peripheral Interrupt Enable

// PIE1.3 Peripheral Interrupt Enable Register

pie1.3 = 0;

// SSPIE: MSSP Interrupt Enable

// IPR1.3: Peripheral Interrupt Priority Register

ipr1.3 = 0;

// SSPIP: MSSP Interrupt Priority

// SSPCON1 control register for SPI mode

sspcon1.7 = 0;

// WCOL: Write Collision Detect

sspcon1.6 = 0;

// SSPOV: Receive Overflow Indicator --> Slave Mode Only

sspcon1.5 = 1;

// SSPEN: Sync. Serial Port Enable

sspcon1.4 = 0;

// CKP: Clock Polarity Select

sspcon1.3 = 0;

// SSPM (3:0) Mode Select --> 0010 = FOSC/64

sspcon1.2 = 0;

sspcon1.1 = 1;

sspcon1.0 = 0;

// SSPSTAT status register for SPI mode

sspstat.7 = 1;

// SMP: Sample bit

sspstat.6 = 1;

// CKE: SPI Clock Select bit

//sspstat.1 = ?;
// BF: Buffer Full status bit

trisc.5 = 0; // SDO, serial data out

trisc.3 = 0; // SCK, serial clock

trisc.4 = 1; // SDI, serial data in

trisd.1 = 0; // Voltage regulator

latd.1 = 1;

trisd.2 = 0; // CSn (chip select)

// FIFOs and the rest as input pins

trisb.1 = 1; // FIFO

trisb.0 = 1; // FIFOP

trisb.2 = 1; // CCA

trisc.2 = 1; // SFD

return;

}

//*** SPI Write/Read Routine ***

char SSPsend(char address)

{

sspbuf = address;
// load data

while(mssp == 0){}
// wait until transmition is complete

mssp = 0;

// reset flag

return sspbuf;

}

//*** Reads an 8-bit register ***

unsigned short read_reg(unsigned short address)

{

unsigned short data;

char temp;

address = address | 01000000b;

latd.2 = 0;

// chip select

temp = SSPsend(address);

temp = SSPsend(0);

data = temp;

data = data << 8;
// Shift data

temp = SSPsend(0);

data = data | temp;

latd.2 = 1;

//chip select high

return data;

}

//*** Writes to an 8-bit register ***

void write_reg(unsigned short address, unsigned short data)

{

char temp;

unsigned short data1, data2;

data1 = ((data >> 8) & 0xFF);

data2 = (data & 0xFF);
// Separates 16-bit data to 2 8-bit

latd.2 = 0;

// chip select

temp = SSPsend(address);

temp = SSPsend(data1);

temp = SSPsend(data2);

latd.2 = 1;

//chip select high

return;

}

/*********************************

 *
Reads message from RXFIFO
 *

 *********************************/

char* read_rxfifo(void)

{

unsigned short n, null, length;

unsigned short address, rssi, fcs;

unsigned long sfd;

char msg[19];

address = 0x3f | 01000000b;

//while(!portb.1);

latd.2 = 0;
// chip select

null = SSPsend(address);

length = SSPsend(0);

msg[0] = length;

n=1;

while(portb.1)

{

//for(n=0; n<=length; n++)

//
{

msg[n] = SSPsend(0);

//
}

n++;

rssi = msg[n-1];

//msg[n] = length;

}

//fcs = SSPsend(0);

latd.2 = 1; //chip select high

//msg[1] = length;

return msg;

}

rxreadingV2.c
(Reading RSSI values)

// Read RSSI for demo 3/7/07

#include <system.h>

#include "EESD.h"

#include "cc2420.h"

#pragma DATA _CONFIG1H, _OSC_HS_1H //10 mhz

#pragma DATA _CONFIG2H, _WDT_OFF_2H

#pragma DATA _CONFIG4L, _LVP_OFF_4L

#pragma DATA _CONFIG3H, _MCLRE_ON_3H

#pragma CLOCK_FREQ 10000000

void main(void)

{

// Initializes SPI and serial port

SPI_init();

serial_init();

delay_ms(500);

short rssi;

unsigned short ans;

char* msg;

// Command strobes to configure CC2420

latd.2 = 0;

ans = SSPsend(0);

ans = SSPsend(1);

ans = SSPsend(2);

ans = SSPsend(3);

ans = SSPsend(4);

ans = SSPsend(0);
// Expected state: 0x66

latd.2 = 1;

write_reg(24, 0x6565);
// Set to Channel 11

write_reg(0x1C, 0x11);
// Set FIFOP threshold length

while(1)

// Begin Demo loop

{

putstring("\r\nWaiting for packet....... ");

putstring(" FIFO: ");

puthex(portb.1);

putstring(" FIFOP: ");

puthex(portb.0);

while(!portb.0);

// While FIFOP is clear do nothing

msg = read_rxfifo();
// Retrieve RX payload

rssi = msg[14];

// Get signed 2's comp RSSI value (assumption: packet is 15 bytes long)

putstring("\r\n -->RSSI: ");

if (rssi >= 128)

// Convert from 2's comp to signed int

{

rssi = rssi -256;

}

rssi = rssi - 45;

// dB offset: -45

putint(rssi);

putstring("\n\r");

}

}
